

 $S_{\text{ground}} = 10$ R. Bagai, G. Christou, Chem. Soc. Rev., 38, 1011-1026 (2009)

8

Systems \blacksquare Applications \blacksquare Characterization \blacksquare Modeling Molecular Nanomagnets **Electronic Structure Engineering** Goal: To increase T_b , τ The two $m_J = \pm J$ states as the ground doublet Key Role of Spin-Vibration Coupling Large J_{ground} As working temperature is increased... Important source of magnetic relaxation Large Zero Field Splitting **Insufficient description!** 15 Systems Applications Characterization Modeling Molecular Nanomagnets **Spin-Vibration Coupling Engineering Relaxation under free evolution** F. Luis, J. Bartolomé, J. F. Fernández, Phys. Rev. B, (1998), 57(1), 505-513 Pauli $\frac{dp_i(t)}{dt} = \sum_{f=1, f\neq i}^{2J+1} \left[\underbrace{\gamma_{f\to i}}_{f\to i} p_f(t) - \underbrace{\gamma_{i\to f}}_{f\to i} p_i(t) \right] \quad i = 1, \dots, 2J+1$ J. F. Fernández, F. Luis, J. Bartolomé, Phys. Master Rev. Lett., (1998), 80(25), 5659-5662 Equation Gómez-Coca et al., Nat. Commun., (2014), 5, 4300 Spin Populations $0 \le p_i(t) \le 1$ $\sum_i p_i(t) = 1$ Indirect (through real or virtual state) Energy **Direct between real states** $\begin{array}{c} f \\ \downarrow \\ |i \rangle \end{array} \begin{array}{c} |i \rangle \\ E_{f} > E_{i} \end{array} \begin{array}{c} |i \rangle \\ |f \rangle \end{array} \begin{array}{c} |i \rangle \\ E_{i} > E_{f} \end{array} \begin{array}{c} \text{Absorption} \\ E_{c} > E_{i} \\ |i \rangle \end{array}$ Emission $E_c > E_f$ Emission Absorption 16

Molecular Spin Qubits

Physical platform: qubits encoded in Spin States of Magnetic Molecules

Molecular Spin Qubits

Gate-based Quantum Computing

Systems \blacksquare Applications \blacksquare Characterization \blacksquare Modeling

Molecular Spin Qubits

Molecular Spin Qubits

Systems Applications Characterization Modeling Molecular Spin Qubits Gate-based Quantum Computing Qubits are open systems: Quantum Superposition uncontrolled interactions **PROBLEM:** destroyed by **Decoherence** qubit-environment $|\Psi\rangle \rightarrow |0\rangle$ or $|\Psi\rangle \rightarrow |1\rangle$ $|\Psi\rangle = \alpha(t/T)|0\rangle + \beta(t/T)|1\rangle$ $t \to +\infty$ T = characteristic timescale of the decoherence process 33 Systems Applications Application Modeling Molecular Spin Qubits Gate-based Quantum Computing Important decoherence mechanisms $\omega_{+-} \approx \omega_{\rm MW}$ $\omega_{+-} \ll \omega_{\rm MW}$ $\Delta \omega_{\rm MW}$ $\omega_{+-} \gg \omega_{\rm MW}$ Vibration bath Spin bath nonnon-(molecular and lattice excited ħω excited (non-excited spins) excited vibrations) $\Delta \omega_{\rm MW} \le 100 \; {\rm MHz}$ $\Delta t_{\rm pulse} \ge 10 \ {\rm ns}$ spin-orbit interaction magnetic dipolar interaction

Systems Applications Application Modeling

Molecular Spin Qubits

Gate-based Quantum Computing

E. Coronado, Nat. Rev. Mater., 5, 87-104 (2020)

Spin Qubits

arXiv:2303.12655 10.26434/chemrxiv-2023-fw96z-v2

free and driven evolution + decoherence/imperfections

software: **OBithm** <u>one-qubit gates and algorithms</u> (decoherence rates = 0, no imperfections)

Spin Qubits

arXiv:2303.12655 10.26434/chemrxiv-2023-fw96z-v2

free and driven evolution + decoherence/imperfections

100

0

4 8

12 16 20 24

Relative increment (%)

10

 $\Gamma_{em,add} (\mu s^{-1})$

translation $T_m \leftrightarrow F$: $T_m \ge T_m^{min} \to F \ge F^{min}$

1

alternative to $Q = T_m$ /gate time: number of gates while $F \ge F^{min}$

28

2x2 matrices

48

Systems Applications Characterization Modeling Spin Qubits arXiv:2303.12655 10.26434/chemrxiv-2023-fw96z-v2 free and driven evolution + decoherence/imperfections ab initio rates two operation modes: software: **QBithm** determination of Rabi osc., T_m, T₁, T_{dd} $\Gamma_{ab}, \Gamma_{em}, \Gamma_{mag}$ semi-empirical benchmarking VIVOPc $[Cu^{II}(mnt)_2]^2$ S = 1/2I = 3/2Bader et al., Nat. Commun., 5, 5304, (2014) Atzori et al., J. Am. Chem. Soc., 138(7), 2154-2157, (2016) [VIVO(dmit)₂]²⁻ $[V^{IV}(dmit)_3]^{2-1}$ S = 1/2S = 1/2I = 7/2I = 7/2Atzori et al., J. Am. Chem. Soc., 138(35), 11234-11244, (2016) 49 Systems Applications Characterization Modeling Spin Qubits arXiv:2303.12655 10.26434/chemrxiv-2023-fw96z-v2 free and driven evolution + decoherence/imperfections ab initio rates two operation modes: software: **QBithm** determination of Rabi osc., T_m, T₁, T_{dd} combined $\Gamma_{ab}, \Gamma_{em}, \Gamma_{mag}$ semi-empirical <u>longitudinal</u> magnetization $M_z = Tr[\widehat{\sigma_z} \varrho^c]$ <u>Rabi oscillations</u> [Cu^{II}(mnt)₂]²⁻ V^{IV}OPc input: fixed free evolution / 2 = rotation / 3 = variable rotation $[V^{IV}(dmit)_3]^{2-}$ adjusted: $|\overrightarrow{B_1}|$ fitted: Γ_{em} calculated: Γ_{mag} , $\Gamma_{ab} = \Gamma_{em} \exp(-(u_+ - u_-)/k_BT)$ $[V^{IV}O(dmit)_2]^{2-}$ 0 dB (14 056 mT) output: [V^{IV}O(dmit)₂]²⁻ $|1\rangle = \frac{Q_{11}}{1} |m_s = -\frac{1}{2}$ 2 dB (11.295 mT) ρ^c $M_z = Tr[\widehat{\sigma_z} \varrho^c]$ time vs 3 dB (10.040 mT) $|0\rangle \quad \downarrow \qquad |m_S = +\frac{1}{2}\rangle$ evolution rotation time 7 dB (6.275 mT) $|\Psi(t=0)\rangle = |0\rangle$ 9 dB (5.020 mT) only one free parameter Γ_{em} $0.5\approx \varrho_{22}\gtrsim \varrho_{11}\approx 0.5$ spin thermalization

 $\varrho_{12} = \varrho_{12,r} + i \varrho_{12,i} \approx 0 \longrightarrow \text{ spin dephasing}$

100 120

lse length (ns)

50

 $t\gtrsim\Gamma_{ab}^{-1},\Gamma_{em}^{-1},\Gamma_{mag}^{-1}$

 $t \gtrsim \Gamma_{ab}^{-1}, \Gamma_{em}^{-1}, \Gamma_{mag}^{-1} \rightarrow \varrho_{12} = \varrho_{12,r} + \mathbb{i}\varrho_{12,i} \approx 0 \longrightarrow \text{spin dephasing}$

52

